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Minimum solid area (MSA) models are popular models for the calculation of the effective properties of porous materials and 
are frequently used to justify the use of a simple exponential relation for fitting purposes. In this contribution it is shown that 
MSA models, and the simple exponentials they support, are misleading and should be avoided. In particular, taking Young’s 
modulus and conductivity (thermal or electrical) as examples, it is shown that MSA models are based on the unjustified (and 
unjustifiable) hypothesis that the relative Young’s modulus and relative conductivity are identical, and moreover equal to the 
MSA fraction itself. This claim is generally false for isotropic materials, both random or periodic. Although indeed a very 
specific case exists in which this claim is true for the properties in one specific direction (viz., extremely anisotropic materials 
with translational invariance), in this specific case MSA models are redundant, because the relative properties are given 
exactly by the volume- or area-weighted arithmetic mean. It is shown that the mere existence of non-trivial cross-property 
relations is incompatible with the existence of MSA models. Finally, it is shown by numerical (finite-element) modeling that 
MSA models provide incorrect results even in the simplest of the cases for which they were originally designed, i.e. for simple 
cubic packings of partially sintered isometric (initially spherical) grains. Therefore, paraphrasing Box, MSA models are not 
only wrong, but also useless, and should be abandoned.

INTRODUCTION

 Minimum solid area (MSA) models, also called 
minimum contact area models, have a long tradition 
in ceramic science and technology. To the best of our 
knowledge, the idea itself has its roots in powder 
metallurgy and is mentioned in a 1949 paper by Balshin 
[1], but in the ceramics literature it has been explicitly 
mentioned (albeit not under this name) for the first time 
in Duckworth’s discussion [2] of Ryshkewitch’s 1953 
paper on the “Compression strength of porous sintered 
alumina and zirconia” [3]. Duckworth gently criticizes the 
compressive tests, but confirms Ryshkewitch’s results for 
flexural and torsional tests. Then, in an attempt to explain 
the observed exponential decrease of strength values for 
ceramics in a relatively wide porosity range (and the 
failure of the exponential description beyond a certain 
porosity value), Duckworth suggests further research of 
this problem, and among the factors to be investigated he 
suggests the “reduction in the effective cross-sectional 
area”, but at the same time adds the warning that “if this 
were the only factor, the strength-density ratio would 
not change with porosity” (which was evidently the case 
in Ryshkewitsch’s and Duckworth’s data and is just an 
alternative formulation of the fact that strength-porosity 
curves are usually not linear). A few years later, in 1959, 
with the Coble-Kingery data on the flexural strength of 

porous alumina already available [4], Knudsen took up 
the problem and focused attention on tensile strength 
[5], for which measured data were available at that time 
for partially sintered iron and steel compacts. It was 
he who made the first calculations of “intergranular 
contact area”, i.e. the MSA for three simple packings of 
monosized spherical particles: “cubic” (actually simple 
cubic), “orthorhombic” (actually simple hexagonal) 
and “rhombohedral” (actually face-centered cubic or 
hexagonal closest packed). The results of these basic 
but tedious calculations (together with the inadequate 
terminology used by Knudsen) have been reproduced 
by innumerable (both journal and textbook) authors, 
too many to be cited here. Knudsen, albeit aware of 
Balshin’s idea [1] to use a power-law relation for fitting 
strength-porosity dependences, came to the conclusion 
that the simple exponential relation is more adequate 
[5], which is not surprising when considering partially 
sintered metal compacts, although the Coble-Kingery 
values [4] could have convinced him of the opposite. 
Knudsen himself was well aware of the fact that for a real 
material with random microstructure the MSA cannot be 
easily determined (in fact, without 3D tomography this 
is impossible). Obviously for this reason he has confined 
himself to the calculation of the aforementioned three 
simple models (packings of monosized spheres, including 
those with the extreme packing fractions 52 % and 74 %), 
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just in order to show that for sufficiently small porosities 
the semi-logarithmic plot of the MSA versus porosity 
exhibits an approximately linear decrease, similar to the 
tensile strength.
 Inspired by Duckworth’s and Knudsen’s idea to use 
the simple exponential for fitting the porosity depen-
dence of strength, Spriggs in 1961 applied for the first 
time a simple exponential relation of the same type for 
fitting the porosity dependence of the tensile modulus 
(Young’s modulus) [6], but without connecting this 
use of the exponential to MSA models. The idea to use 
the simple exponential for the Young’s modulus has 
been immediately welcomed by Knudsen [7] and then 
extended to the shear modulus by Spriggs and coworkers 
in 1962 [8, 9]. 
 In the years to come, the simple exponential relation 
became one of the most popular and most widely used 
relations for fitting property-porosity dependences, but 
as far as we know the MSA model fell into oblivion 
(except for a brief note by Rice in 1976 [10], which 
seems not to have had any significant impact, however), 
until Rice revived the MSA concept in the 1990s [11-15], 
culminating in his 1998 monograph [16], and – being 
evidently convinced of its usefulness – managed to 
popularize MSA models among the younger generation of 
materials scientists [17-25]. A major step beyond earlier 
researchers was Rice’s suggestion to use MSA models 
also for non-mechanical properties, e.g. conductivity 
[14, 16]. With this extension by Rice, MSA models can 
be briefly summarized by the statement that the MSA 
fraction is not only equal to the relative Young’s modulus 
but also to the relative conductivity.   
 However, irrespective of the MSA fraction, it was 
well known (for those who knew it well) already in 
the 1950s that the relative Young’s moduli and relative 
conductivities cannot be equal in general (the only 
exception is the very special case of translationally 
invariant microstructures, for which the properties 
in one special direction can be calculated exactly via 
the area-weighted arithmetic mean), since it had been 
shown by Dewey [26] and Mackenzie [27] that even in 
the linear approximation (exact solution of the single-
inclusion problem for very low porosities) the numerical 
coefficients (which are a function of the Poisson ratio 
[28]) for the porosity dependence of elastic moduli of 
materials with spherical voids are different from those 
for the thermal or electrical conductivity (for which the 
value 3/2 had been found by Maxwell [29]). Of course, 
this difference remains relevant in all corresponding 
nonlinear relations [30], which must necessarily approach 
the linear approximations in the low-porosity limit, and 
also in the case of non-spherical, e.g. spheroidal, pore 
shape [31, 32]. 
 Moreover, for more than one decade now, there is 
increasing evidence for the existence of so-called cross-
property relations, i.e. interrelations between different 
relative properties, e.g. the relative Young’s modulus and 

electrical or thermal conductivity [33-36]. In this paper 
we show that the mere existence of non-trivial cross-
property relations is incompatible with MSA models. 
Further we show that MSA models are not only wrong, 
but also useless and highly misleading.      

RESULTS AND DISCUSSION

Effective properties, relative properties, 
micromechanical bounds and elementary 

cross-property relations

 Effective properties are the overall, macroscopic 
properties of heterogeneous materials, i.e. materials 
with internal phase boundaries. In the case of multiphase 
materials, including porous materials as a special case, 
they depend on the volume fractions (e.g. the porosity ϕ) 
and all other details of the microstructure. Relative 
properties of porous materials Pr are ratios of effective 
properties and the corresponding properties of the dense 
materials, i.e.

(1)

where P is the effective property of the porous material 
and P0 the property of the dense solid phase (or phase 
mixture). For certain properties, e.g. elastic moduli and 
thermal or electrical conductivity, micromechanical 
bounds are available that delimit the domain of the 
possible values these properties may attain [37].     
 Although the homogenization models proposed 
by Voigt [38] and Reuss [39] were recognized in 1952 
by Hill [40] to be universally valid upper and lower 
bounds, respectively, for the effective elastic moduli 
of dense polycrystalline materials, it was not until 
1960 that Paul [41] stated that the volume-weighted 
arithmetic mean and the volume-weighted harmonic 
mean were upper and lower bounds, respectively, also 
for the effective elastic moduli of multiphase materials. 
The corresponding bounds for conductivity had been 
discovered much earlier (in 1912) by Wiener [42]. Now 
for porous materials, in which the pore phase has zero or 
negligible property values, the lower bounds of this type 
degenerate to zero. On the other hand, the upper bounds 
for the Young modulus and conductivity are identical in 
this case and can be written as 

Er ≤ 1 – ϕ                               (2)
and  

kr ≤ 1 – ϕ                                (3)

 These are universal bounds (Wiener-Paul bounds, 
in the sequel “WP bounds”), valid for both isotropic 
and anisotropic microstructures of any type. However, 
in certain directions of materials with anisotropic 
microstructures these inequalities degenerate to equalities. 
This is the case if and only if the microstructures exhibit 
translational invariance (e.g. materials with oriented pore 
channels of arbitrary but constant cross section) and only 

0P
PPr =
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in the direction parallel to the translation (i.e. parallel to 
the pore channels). In this case we have the trivial cross-
property relation

Er = kr                               (4)

 Moreover, for a translationally invariant micro-
structure the solid volume fraction (i.e. the relative 
density of the material or the packing fraction of the 
particles) is equal to the solid area fraction in any cross 
section perpendicular to the direction of translation. 
This solid area fraction is constant along the translation 
direction and therefore (in this specific direction) at the 
same time equal to the MSA fraction, i.e.

 

,            (5)

where ϕs is the solid volume fraction, A the total section 
area and As the area of solid sections, so that the ratio 
of the latter two is the solid area fraction (in the above 
case a constant value for any section in this specific 
direction). The MSA hypothesis can be written in the 
simple form

  
.                     (6)

 Unfortunately, this equation, although valid in the 
aforementioned very specific case, is wrong in general. 
That means, except for the aforementioned very special 
anisotropic microstructure, for which the relative elastic 
modulus and conductivity in one special direction can 
be exactly calculated via the volume- or area-weighted 
arithmetic mean (linear mixture rule), there is no other 
microstructure for which any of the equality signs would 
be valid. In particular, this implies that MSA models 
cannot be correct for any isotropic microstructure, 
irrespective of whether it is random or not.      
 Shortly after Paul’s finding that the volume-weigh-
ted arithmetic and harmonic means are upper and lower 
bounds, respectively, of the effective elastic moduli, 
Hashin and Shtrikman, using variational principles, found 
more restrictive bounds for the effective conductivity 
and elastic moduli of isotropic materials [43, 44]. Again, 
for porous materials the lower bounds degenerate to 
zero identically. The upper Hashin-Shtrikman bounds 
(“HS bounds”) are 

(7)

for the Young’s modulus (to an excellent approximation, 
but principally dependent on the Poisson ratio [28]) and 

(8)

for the (electrical or thermal) conductivity (exactly [30]). 
As in the case of the WP bounds, also the HS bounds can 
be realized ϕ exactly by certain microstructures, at least 
in principle [37], and materials with microstructures 

that obey the upper HS bound for the Young’s modulus 
(or other elastic moduli) will obey it also for the 
conductivity. Therefore, just by solving one of the two 
equations with respect to the porosity and inserting into 
the other we obtain the cross-property relation [35]

.                          (9)

 This HS-based cross-property relation is an excel-
lent (and for practical purposes completely sufficient) 
approximation to the cross-property relation

  

.         (10)

found by Sevostianov et al. [33, 34], which takes into 
account the fact that Equation 7 above is not exact but 
changes very slightly with a change in the solid Poisson 
ratio. It is obvious that already the mere existence of 
such a cross-property relation is in conflict with the 
MSA hypothesis. 
 It is clear that for isotropic two-phase 
microstructures with a uniform random arrangement of 
grains or pores the area fraction is the same, on average, 
in arbitrary positioned and oriented sections. Moreover, 
according to the Delesse-Rosiwal law [45, 46] this 
area fraction corresponds to the volume fraction. That 
means, also in this case, similar to the very specific case 
mentioned above, the solid area fraction in any section 
is at the same time the MSA fraction. In other words, 
in this case the MSA fraction does not add any new 
information, because it is identical to the solid volume 
fraction (i.e. simply the complement to porosity). On 
the other hand, for periodic microstructures, e.g. cubic 
packings of partially sintered isometric particles, a 
minimum of the solid area fraction does indeed exist 
(for any direction). However, in this case MSA models 
treat the microstructures as if they were translationally 
invariant (which is not the case), erroneously assuming 
that the MSA fraction is the equal to the solid volume 
fraction. As a conclusion it can be said that MSA models 
are wrong in all cases except in cases in which they are 
redundant.

Cross-property relations based on 
predictive model relations

 Isotropic porous materials with microstructures 
whose properties realize the HS upper bounds are very 
rare, and real materials of this type are virtually non-
existent. Actually we are not aware of any data in the 
literature that would indicate Hashin-Shtrikman-type 
behavior. However, there are many examples of real 
materials that follow approximately the power-law 
relations (Gibson-Ashby relations for open cell-foams) 
[47]

Er = (1 - ϕ)2,                        (11)
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Kr = (1 – ϕ)3/2,                     (12)

or our exponential relations [28, 30, 48-52]

,                      (13)

,                      (14)

 It should be recalled, that this type of exponential, 
proposed as a functional-equation-based predictive 
model by the authors, does not violate the upper HS 
bound, in contrast to the simple exponential that has 
been proposed by Spriggs for fitting elastic moduli data 
[6, 8, 9] and extensively used in the context of MSA 
models [11-25]. Of course, if desired, also our types of 
exponential relations could be used for fitting purposes 
(by letting the numerical coefficients 2 and 3/2 vary), 
being as flexible as the simple exponential, but avoiding 
its basic shortcoming. Interestingly, both types of 
relations, power-law and exponential, yield the same 
cross-property relation [36] 

Er = kr
4/3.                          (15)

 According to our experience this is the most realistic 
of all cross-property relations currently available for 
materials with isometric pores. It can be expected that, 
irrespective of whether the porosity dependence of 
relative properties is closer to the power-law (Equations 
11 and 12) or our exponential (Equations 13 and 
14), this cross-property relation will provide a good 
prediction of the relative Young’s modulus when the 
relative conductivity is known and vice versa. Actually 
we have found this cross-property relation to be useful 
far beyond the range delimited by these two relations. 
What is more important, however, is the fact that also 
this non-trivial cross-property relation is obviously in 
contradiction to the MSA model hypothesis, Equation 6. 
 Finally, for those who would tend to argue that for 
small porosities MSA models should be acceptable, 
we would like to add a cross-property relation for 
infinitesimally low porosities. For spherical pores this 
cross-property relation is [36],

,                         (16)

as a simple consequence of the fact that the single-
inclusions of the Young’s modulus and the conductivity, 
respectively, are [26, 27, 37]

Er = 1 – 2ϕ,                           (17)

.                          (18)

 Of course, this cross-property relation (Equation 16) 
is not very practical, because infinitesimally low poro-
sities are usually not very interesting, but it clearly shows 
that even for the smallest porosities the relative Young’s 

modulus is different from the relative conductivity, and 
thus even in this case MSA models principally fail. It 
is true that the numerical coefficients (Maxwell and 
Eshelby-Wu coefficients) in these relations are functions 
of pore shape (for a more detailed treatment the reader 
may refer to our previous papers [31, 32]), but there is 
no pore shape for which these coefficients are equal for 
these two properties.

Refutation of MSA models
via finite-element modeling

 It has been shown that the mere existence of non-
trivial cross-property relations contradicts the basic MSA 
model hypothesis, Equation 6, i.e. seriously questions 
the admissibility of MSA models. In an attempt to rescue 
at least a little bit of the MSA concept, some might now 
want to argue that MSA models may be acceptable for 
concave pores, i.e. interstitial voids between convex 
particles, for which they have originally been designed.
 This is indeed a question that cannot be answered by 
invoking analytical models. Therefore, last but not least, 
we show by numerical (finite-element) modeling that 
MSA models are wrong even for the simplest thinkable 
case for which they have been originally designed, i.e. 
for materials with concave pores (interstitial voids) in 
a simple cubic packing of isometric grains (initially 
spherical particles), partially sintered to different den-
sity. For this purpose an idealized microstructure of this 
type has been constructed via the GridGeo module of 
the commercial GeoDict® software package (MATH2 
MARKET, Kaiserslautern, Germany). The unit cell 
consisted of 200 × 200 × 200 voxels, the sphere diameter 
has been set to 100 µm, and idealized partial sintering has 
been simulated by gradually reducing the lattice constant 
and thus allowing the spheres to overlap. This idealized 
partial sintering (without neck formation) corresponds 
exactly to one of the paradigmatic key examples cited in 
the context of MSA models. Examples of these micro-
structures are shown in Figure 1. Figure 2 shows the 
decrease of the porosity from its initial maximum value 
of 47.6 % for particles with point contact (where the 
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Figure 1.  Examples of digital microstructures with different 
porosity created via idealized partial sintering, i.e. by increasing 
the particle overlap (without neck formation).
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MSA fraction is zero) to zero for an MSA fraction of 
unity, i.e. a dense material. 
 Based on this digitally created microstructure, the 
Young’s modulus and conductivity have been calculated 
numerically using the ElastoDict and ConductoDict 
modules, respectively, of the GeoDict® software for 
material properties with a phase contrast of 1:1000 in 
the case of conductivity and infinity in the case of the 
Young’s modulus.    
 Figure 3 shows the MSA fraction dependence of the 
relative Young’s modulus and relative conductivity of 
partially sintered isometric (initially spherical) particles 
in simple cubic packing. It is evident that the results 
for the relative Young’s modulus and conductivity are 
completely different and that both are different from the 
MSA prediction.  

 This closes our argumentation. It is clear that when 
the MSA model fails to predict the relative properties 
even for the simplest microstructure for which it has been 
originally designed and for which success of the MSA 
model has been claimed for decades, the MSA model is 

likely to fail in all cases were translational invariance is 
absent. That means all claims on the apparent success of 
MSA models were premature and are now known to be 
wrong.   
 Thus, irrespective of the fact that the simple expo-
nential commonly used in MSA models has serious 
disadvantages in itself (even as a fit relation), and 
irrespective of the answer to the question, which of 
the cross-property relations is the most realistic (to be 
answered in a forthcoming paper), it can be said with 
certainty that 

 .                    (19)

 That means the basic hypothesis of MSA models, 
Equation 6, and all subsequent claims based on this 
hypothesis, are wrong.  
 It is remarkable that Spriggs, who was the earliest 
proponent of the simple exponential relation (which he 
used extensively), never propagated MSA models, and 
it seems that also other “grand old men” of ceramic 
science never took them too seriously. Probably they 
intuitively felt that something was wrong with these 
models, although at that time numerical (finite-element) 
modeling, which is indispensable to complete the proof, 
was not yet available. We dare surmise that also Knudsen 
had an uncomfortable feeling with the (unjustified and 
unjustifiable) key assumption of his 1959 paper, and 
this might have been the reason why he himself never 
returned to MSA models. So it remains to be hoped that 
the next generation of materials scientists will not be 
mislead by this unlucky heritage in the years to come. 

CONCLUSION

 The fact that Knudsen draw attention to tensile 
strength made the MSA concept at first sight highly 
plausible and has certainly contributed to its further 
dissemination. It seemed almost intuitively clear that 
the tensile strength is determined by the weakest cross 
section. And indeed, up to this point, everything is 
correct. But Knudsen went one essential step further 
to conclude that the relative strength is equal to the 
relative (i.e. normalized) MSA, i.e. the MSA fraction. 
We are convinced that already this conclusion is wrong, 
but for strength it is not easy to provide a proof of 
this claim. Therefore we have made no attempt to do 
so. Rice, however, draw the logical conclusion that, if 
tensile strength, then also the tensile modulus (Young’s 
modulus) and the conductivity should be equal to the 
MSA fraction. This is a statement that is – at least for 
the simple model structures proposed by Knudsen and 
Rice – amenable to verification or falsification. What 
we have shown in this paper is, that the MSA model 
is wrong in the simplest case that can be checked by 
numerical calculation, viz. the effective Young’s modu-
lus and conductivity of a simple cubic packing of 
isometric (initially spherical) grains, partially sintered 
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to different density. Moreover, the mere existence of 
non-trivial cross-property relations between the Young’s 
modulus and conductivity shows that equality of relative 
properties and the MSA fraction, as postulated MSA 
models, is elusive for all microstructures, except for the 
trivial case of translationally invariant (i.e. extremely 
anisotropic) microstructures in one specific direction, for 
which the effective elastic moduli and conductivities are 
exactly given by the area-weighted arithmetic mean. That 
means, cum grano salis it could be said that MSA models 
are wrong in all cases, except for those in which they 
are redundant. It should have become clear, however, 
that the failure of MSA models does not consist in the 
fact that they are too idealized to describe real materials. 
This is a deficiency of most other models as well. The 
reader should have noticed that our critique does not 
even mention the fact that in practice there is no feasible 
way to determine the MSA for real materials. Although 
this feature is not very nice indeed, because it hinders 
the use of these models for predictive purposes, many 
authors seem to accept models that are useful only for 
fitting purposes and have no predictive value in practice. 
The crucial point is that even for the simplest case of 
a partially sintered simple cubic packing of isometric 
(initially spherical) grains the MSA result is wrong, 
both for the Young’s modulus and the conductivity. With 
respect to this situation, recalling Box’s statement [53, 
54] that “all models are wrong, but some are useful”, it 
may be said that MSA models are not only wrong, but 
also useless. 
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